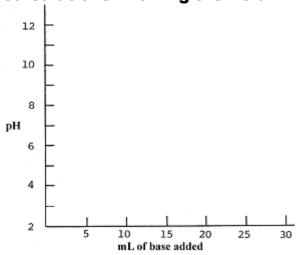

Worksheet #11

Name: Period: Seat#:

USE BINDER PAPER TO DO YOUR CALCULATIONS. STAPLE TO THIS PAGE

Information from the Curve:

There are several things you can read from the titration curve itself. Consider this titration curve.



- 1) This is a ______(strong/weak) acid titrated with a strong base. The acid is _____(monoprotic/diprotic).

 How would the other strength of acid look?

 Answer:
- Place a dot (*) on the curve at the equivalence point. The pH at the equivalence point is _____. Choose a good indicator for this titration, look online or in your book for pH indicator ranges.
 Answer:
- What volume of base was used to titrate theacid solution? _____ mL
- 4) Place a box (■) on the curve where the pH of the solution = the pKa of the acid. What is the pH at this point? _____ What is the pKa of the acid? _____ What is the Ka of the acid? _____

Calculations knowing the Acid:

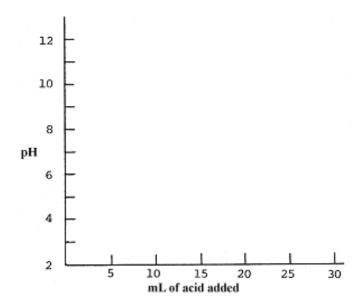
- 5) Hydrofluoric acid, HF, has a $K_a = 7.2 \times 10^{-4}$. Calculate the pH of 10.0 mL of a 0.050 M solution of HF. Plot the point on the axes. 2.2
- 6) A 0.020 M solution of NaOH is used for the titration. What volume will be needed to reachthe equivalence point? 25ml
- 7) Write the net reaction for the neutralization of a solution of HF with a solution of NaOH: Answer:
- 8) Calculate the moles of F⁻ at the equivalence point. <u>0.0005 mol</u>
 What is the total volume? _____L <u>0.035L</u>
 The [F⁻] at the equivalence point is _____
 <u>0.0143M</u>
- 9) Calculate the pH of the solution at the equivalence point. <u>7.65</u> Use this information and the answer to question 6 to plot the equivalence point on your graph. Choose a good indicator for this titration look online or in your book for pH indicator ranges. Answer:

Dougherty Valley HS Chemistry - AP Acid Base – Titration Calculations

- **10)** What is the pH halfway to the equivalence point? Plot this point on your graph. <u>3.14</u>
- **11)** How many moles of HF are in the original 10.0 mL sample of HF? 0.0005 mol
- **12)** When only 5.0 mL of 0.020 M NaOH has been added, calculate the moles of HF left and F-produced.

	HF	OH-	H ₂ O	F-
i				
c				
e				

- 13) Use Henderson-Hesselbach equation or an ice table to calculate the pH when 5.0 mL of base has been added. Plot this point on your graph. 2.53
- **14)** When 20.0 mL of 0.020 M NaOH has been added, calculate the moles of HF left and F⁻ produced.


	HF	OH-	H ₂ O	F-
i				
c				
e				

- **15)** Use the Henderson-Hesselbach equation or anicebox to calculate the pH when 20.0 mL of base has been added. Plot this point on your graph. <u>3.75</u>
- **17)** Sketch the final titration curve on your graph on the front of this page.

Weak Base-Strong Acid Curve:

A 20.0 mL sample of 0.10 \underline{M} CH₃NH₂ (methyl amine) is titrated with 0.15 \underline{M} HCl. The K_b for CH₃NH₂ = 4.2 x 10⁻⁴.

Do all the appropriate calculations to sketch a titration curve for this titration.

Formulas from the AP Exam:

EQUILIBRIUM

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$$

$$K_{w} = [OH^{-}][H^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}C$$

$$= K_{a} \times K_{b}$$

$$pH = -\log [H^{+}], pOH = -\log [OH^{-}]$$

$$14 = pH + pOH$$

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$

$$pOH = pK_{b} + \log \frac{[HB^{+}]}{[B]}$$

$$pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$

where Δn = moles product gas – moles reactant gas